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I. ODUCTION

In studies of free electron lasers (FEL) systems, in which emission gain
is induced through wiggler magnetic field modulation of the electron motion,
detailed knowledge of the electron orbits is necessary in order to evaluate
the critical features of the amplification scheme. These features include
evaluating the frequency range for amplification, gain, rates, saturation
mechanisms, and amplifying efficiencies. However, there exist very few mag-
netic geometries where the electron motion, even in the vacuum fields, can be
obtained analytically wi;:gigfficient information to assess these critical
features. Only recently has it been realized that in the "on axis" approxi-
mation the helical wiggler orbit problem can be reduced to quadrature, and that
particular discovery has already led to significant progress in FEL amplifica-
tion schemes.;’,’/For FEL systems with strong magnetic guide fields, little
or no insightful progress has been made except for this helical case. However,
for just this class of magnetic systems, i.e. strong guide fields with a
relatively low amplitude magnetic wiggler superimposed, an asymptotic mathe-
matical formalism does exist where the electron equations of motion in the
vacuum fields can be greatly simplified, and typically reduced to quadrature
in parameter regimes of relevance to applications.

For wiggler fields which are small in amp?‘?ha compared to the basic
and necessarily geometrically simple guide field, asymptotic methods can be
used to simplify the orbits for various ranges of the parameter, & = kov“/QC,
where Qc is the relativistic electron gyrofrequency in the guide field, and
ko and v, are the values of the wiggler wavenumber and electron velocity

parallel to this guide field. From the current studies of the exactly soluble




"on axis" helical wiggler these same ranges are in fact just the interesting ones.l’z’3

For § « 1, the wiggler madifications of the quide field orbits can be handled

4 and for & >>1, standard weak

in the well known guiding center approximation,

_f perturbation methods easily prove to be adequate. For |1 - §] « 1, the so-called
. resonant regime, secular perturbation methods have proven successful in simpli-
fying the orbit analysis for particle motion in small amplitude fluctuating rf
fields. This analysis can be straightforwardly applied to the wiggler problem

as long as only widely separated values of ko are present in the system, and as

long as these ko's are very slowly varying in space. Furthermore, this same
method can be used when § is close to the ratio of two discrete integers. How-
ever, of particular interest to FEL applications and for the sake of simplicity,
we will not here develop a general formalism for an arbitrary wiggler, but will
restrict this study to the orbits of particles near the magnetic axis of a

longitudinal wiggler field in cylindrical geometry:

~

1+ Kk2r? ] .
)]ez + fBokor smkozer . (1)

B=B[1+ k 2(1 + 0
:o ECOSOZ -—T—'—-

The exact description of the particle motion in this multiple mirror geometry
can be greatly simplified because of the existence of the two exact constants
of the motion--energy and angular momentum--but the orbits cannot be reduced
to quadrature except in the limit § » 0.6 Therefore, the success of the
P asymptotic technique for this case is particularly meaningful. Additionally,
| a number of FEL studies in this geometry have proceeded neglecting entirely
the radial magnetic field in Eq. (1), and therefore have used a B field which

is not divergence-free. The consequence of this approximation can now be

determined.




I1. ASYMPTCTIC TRAJECTORY ANALYSIS
For the specific case of motion in a longitudinal wiggler the relativistic

equations of motion in the laboratory frame in standard cartesian components

are
dv .. 2 -
at * iy -mc[iSBzv ivz(GBx + iGBy)] (2a)
4 dv
t. e -
I at mc[vaBy vyan] ’ (2b)
where e < 0 is the electron change, m is the relativistic mass (which is a

th

constant), 68i are the i~ vector components of the wiggler field, Q = eBo/mc,

and v = Vy + ivy . The entire philosophy of the trajectory analysis in all of
the previously discussed ranges of & is that the Teft-hand sides of Eq. (2)
induce only small changes in the orbits described by the right side of Eq. (2)

in a cyclotron period T = 2n/n°. With such a philosophy and by Fourier

i
A
3: analyzing the wiggler fields, a straightforward analysis of the motion can
. j proceed, even in the resonance regime.5 However, for unification and simplicity
Eil here with field given by (1), Eqs. (2) simply become to order ¢’
- g dv ida _
Grivtage =0 (3a)
and
= R
s dv e k
it
N L F{l = -—491!-2 sinkoz (vo* - v*w] , (3b)
'7§ ; withw = x + iy, and @ = @ 11 + e cosk z(1 + k§r2/4)1-

ff{- Eqs. (3) are not exactly integrable, so a perturbation theory must be
: constructed for their solution, however two exact constants of the motion,
energy and angular momentum (in a symmetric muitiple mirror system) do exist

and from (3) these correspond respectively to the conditions
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FviZ+ vl = 0 (42)

obtained by multiplying (3a) by v*, and adding this equation to its complex

conjugate equation and using (3b)

and
d fuw* - a* 2
&[“*L_i_ﬂ_“’.+ Q|w] ]: 0 (8b)

[obtained by multiplying (3a) by w* and subtracting this equation from its

complex conjugate].

In the spirit of usual secular perturbation theory, the solutions of (2)

proceed by assuming that the 58 corrections induce a slowly varying component

of v, and a slow modulation of the phase and amplitude of the fast component
of v. So writing

V=V+48y
(v,8v are the slow and rapidly varying components of v respectively) and
correspondingly

w=w+ w

v, = VZ + v, ,
the slow variation of v is determined by

dv - _Tel, N '
S+ 0V =-2[sB,v - v, (88, + isBy)] (5a)

and dv, given by
d el
(EE'+ iﬂo)av =-EE{§BZV - vz(GBx + 1say)]- time average} (5b)

and similarly for v, and év,, where the bar (T ) indicates averaging over a

z
cyclotron period, 2n/no. Now, the quantity & = koizlno enters in directly

i ) 3 TN IR kel




in calculating the time averages. When § « 1 (called the drift approximate or

gyrokinetic 1imit) then GBi is essentially constant in a cyclotron period, so

here we have

o amme .
.

§«x1
dv - _ ei - =
gt t eV = - leB,v - v, (e8, + iSBy)] (6a)
’ ’ hence
) TR )
V= (1 - gt (98 * 19B,)
. = 2~ 2
_ 6B, isB kv k™| + Swl
N Vz(—Bl * _El) ) Vz%'('%z')ko‘“ cosk,z(1 + Li—-— (6b)

We see from (6b) that in this 1imit v consists of the "x" and "y" components
of the velocity parallel to ﬁ, plus the usual curvature drift term, the last
term in (6b). The usual grad B drift is neglected in this FEL application

because |v|2'« v%, so it is correspondingly smaller than the curvature drift.

Even so, in this drift limit, the curvature drift is of order ekao times

v, S0 by the assumed orderings of this 1imit, this is negligibly small.

Note also that the phase of the curvature drift differs from w by a factor

of +i, hence this drift is in the "6” direction, i.e. perpendicular to the
vector ¥ .

Further discussions of the drift 1imit are not necessary because of the
vast literature on the subject. However, it is to be noted that an overall

amplitude correction is to be added (in the § « 1 1imit) to previous orbit

ana1yses7 which entirely neglected GBr. This correction, easily derivable

from £q. (2) or (3) corresponds to use of the adiabatic invariant u = e|5v|2/23,

and corresponds to an amplitude factor multiplying the previously obtained




B

so'lutions7 for w by the factor /5075. This geometric factor then properly takes
into account that the actual 6B must satisfy V-GE = 0, whereas neglect of 6Br
does not satisfy this divergence condition.

In the more interesting limit f'or obtaining large orbit excursions,]’2
|§] ~ 1, and the methods of time averaging the exact equations must be care-
fully reconsidered. In garticular the éSBi terms vary as sinkoz » the argument
of which varies in time roughly as kovzt + slow modulation. Similariy, from

(5b) we see that 8v varies as exp(-mot)* a function with a slow time modulation.

Therefore in time averaging (5a) we now obtain, to lowest order in ¢,

19 € 2 k v
%% + 'IQ V = - [(1 + _](.0 % &-Dl ) + ZQ ]u exp('iW) s (73)
15:{2 2~ 7
i =-—2exp(ip) (1 + X Klat sl 4 g 2] (70)
and

dv eQ k

.__E.=_————-o O iv i

Tt 8 (o + 1v/Q°) exp(iplu* + c.c.] (7c)

with the functions 6v = u exp(-iﬂot), Y = koz + Qot, and the approximations
sw = 6v/(-1Q)) (1 +0el; p<Q , dv, « |sv| (by energy conservation év, ~ de/\'/z),
and it was assumed that kocﬁ remains small compared to unity. As v varies slowly

compared to Qo’ (7a) can be iteratively solved to yield (correct to order c)

e o .. g

. 2 2
- _ € 3, k°[@ + Suw
v --4uexp(-iw)[ 5; -—-—————-—-2 ] (8a)
Inserting this into (7b) and neglecting terms that are small multiples of ez,
(7b) becomes
iezn 592

u - ) Oy =- —-59~ exp(iv)s - (8b)
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Defining p = exp(-ieznotls)u and g = ¢ - eznolat we find the simple equation set

. eng _ ]
p=-—7 exp{iz)u (9a) ;

- 2 - ;
V=0 ﬁ-p exp(- 1«:)[1 + 3‘1‘- = * Su ] (9b)

. and
d - ko 2 3
stz - mel’] -0 (9¢)
0

Equation (9c) is also a direct result of kinetic energy conservation, Eq. (4a).
Using (9a) in the lefthand side of (9b), and neglecting the product of small
terms times e (which then eliminates the k /4 term in B » but is valid if

kor remains small)

€ Q
. . - € . -
B - ilkgV, + 9,1 - 5 - 5p=0 . (10)

This equation (10) appears to be as complicated as the original starting
equations in (3), but in fact now there is only one time scale; the slow time
scale compared to 2v/9°. and wfth the conservation equation (9c), (10) will
be shown to be exactly soluble.

Introducing the new dependent variables s and 6, p = Qs exp(-i9),

Eqs. (8) reduce to

- 2 2
= e 2. % | %k 4
O+t "G o (11a)
%ﬁ b c2 a constant, with q, = kocl + (1 - ezls)ﬂb ’ cl the constant defined by
Eq. (9c), and
Y
LR §=-2V(s) (11b)
o :
pord
?2 it: .ne effective potential V given by
LF
2 2 2
C e"q a k2 9 st
R I i PR e mes : (11c)




Choosing the dimensionless variables X = koS » N = Q) /Q , and [ = sz /Q

we have the final equation, soluble by quadratures

v o av
X=-5 (12a)
2 x* 8 9_123 L_nX_ 2
__[g__-.- _E—--C)X +nT+a]= 2[(x'2 )"’HC ](IZb)

By their definition and the assumptions of this analysis

' K=ks«l, n=1+8<1, and c~s2k§n+k4s4«1 ,

‘ therefore the time scale for the X variation is seen to be much longer than Q> con-
' sistent with assumptions. We note that the X4and XstermS'h\the effective potential,

V, come strictly from the change in VZ as |z|2 increases as given by (9c) and is a
result of the detuning of the linear resonance, kovz - -, . Also note that as

@, <0 for electrons, the conservation law indicates that as [z] = [8v] increases

7% The X term in

VZ decreases, as expecfed from constancy of v = [1 - Vzlczl
the potential is definitely a stabilizing term, that is, it sets an upper bound
on the 1imits of |X|, and these limits are not such as to invalidate the assump-
tion of small X because it clearly dominates the force term when X = n and as
n <1, the small X approximation must still retain the x6 term.

By conservation of the effective energy, E, of Eq. (12): E = X /2 +V
= constant, Eq. (12) can be reduced to quadratures and by using the independent
variable y = X2, the integrals are all of the elliptic type. However, this
result is probably no more useful than the observation that by standardizing
the original equation, (3a), and neglecting the k /4 term in GB » the resulting

equation is of the Mathieu form. So, some aeneral considerations are in order

and will be shown to provide sufficient information for analytically describing

the electron orbits to the degree necessary for most FEL applications.
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ITI. RESONANT ORBIT DESCRIPTION
The effective potential described by (12b) yields a very useful method

R -
it

for analytically dealing with the orbits. Recalling the definitions of

variables we have that
kdu = 1X exp {11, (1-cZ/8)t+01} (13a)

so that the effective potential diagram describes the modulated Lamor motion
of the electron with X = |k°6w|. Knowing the quantitative features we can

derive all of the remaining orbit characteristics including the guiding center

position, i

i . . 3
ki = _4exp[-;(e+c)]|;_§(_ -G - %)g ) %)] . (13b)
()
or
|k | = ;§5§'E - 5N + —35—|= constant + X" . (13c)
0

Equation (13c) is also a consequence of angular momentum conservation, equivalent

to Eq. (4b). Therefore following the X motion using the effective potential method

ad T e, L

directly gives a picture of the excursions in Larmor radius, lkodm(t)l = X, and the

difference in X2 gives the differences in the square of the guiding center position;

lkyalt)? - [k a(t,)|? = Xz(tl) - x%(t,)

S e

In general the effective potential has the characteristic shape shown in

Fig. 1. The number of minima can either be one or two. These differences are

important as a minimum in the potential corresponds to a stable electron orbit

[N ,...“,:.,,1".?’4,!-,1”,

with constant radial guiding center and magnitude of the Larmor radius. The

? details of this potential and the resulting motion can be investigated in depth

in various limiting cases of the parameter, ¢, €, and n.
In the experimentally interesting 1imit where |n| » €/2, the equations of

motion can be written in terms of the new variable, y = X/lnlg, and new potential,




e - -t —
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2 2
. ol ~ 2 2
ye-5 » V=5 £ - yE(n) - y¥8 (14)
y 2 2y
with E(n) = {t%: 2 z g. As ¢ - ﬁikr)zn, the constant r,/n2 ~ (kr)Z/n and is

typically of order unity. From (14) we see that the time scale of these defec-
tions are of the order =2w/nQo »>2n/Qo by assumption. By simple algebraic
calculations the potential V can be shown to have two minima (as in Fig. 1)
only if -2 < c/n2 <0,0rn <0 and 0 = c/n2 < 2/3. Otherwise V has only

one minimum for y > 0.

w

As a particularly simple example let us determine the quantitative features
of a particle withz = 0, |n|>» €/2. Forn >0, onlyy =0 is a minimum, and
the motion is oscillatory but y remains near ¥y = 0. For n <0 two minima which
are zeros exist in V, at y = 0, and y = /8. A relative maximum of v occurs *
at y_ = /8/3 with a value of V(yml = (16/27)n29§. As this value is large

compared to the energy, given by (13c) as
2.2
€
0 -2 2 2
E=——3—2——[|nw| -X]<€ ’

by assumption then electrons initially near the minimum at Yo * /8 will oscillate
but remain near to this value of Yo For small oscillations near y, the motion
is sinusoidal with the exact frequency being given by Wos = WA /?%nno in this

"not too" resonant regime, |n| »e€/2, one or two equilibrium positions can exist,

and motion around these stable singular points is very limited. Additionally,

in this not too resonant regime the new non-zero guiding center position is of
the order of the size of the Larmor radius, and is n-dependent (eq. ¢ = Q0 gives
the second equilibrium positions as |kop| = /8[n]). Hence, small changes in the
resonance, |k V  /Q | = |6| can make substantial relative changes in the equilib-

20' "0
rium orbit positions.
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For smaller values of n, very near resonance such that n2 - e2/4 - ¢ is

negative the first minimum in V now is not at X = O even when ¢ = 0. This means
that even those electrons that initially have small perpendicular velocities and

radial positions near r = 0 can still experience significant radial excursions

and velocity modulations. For example in the simplest limit ¢ = 0, V has an

absolute minimum at X = Xo’ with

K274 = 509 + @/9V 7 + (0764 (15)

Therefore an electron will make excursions in X around Xo,turningwherever E=V(X).
From (13c), we note that for =0, the energy E= (529§/32MX2-|ko&|2]. So for a
particle with an initial Larmor radius, (X), equal to its initial quiding center
displacement, (|k°&l), E = 0. For these electrons (z = 0, E = 0, n2 < c2/4) the
turning points, Xys can be shown to be Xt = 0 and Xt = 2(e/2-—n)%_ 0f course for
the particular initial condition of the particle initially being at r = 0 with

exactly zero perpendicular velocity, i.e., add the special condition X = 0 to

these initial conditions; the particle just remains at X = 0. However, this is
an unstable point and very small deviations from the conditions X = |k06| =0
will cause the electron to make significant radial excursions.

In the simplest case of ¢ = 0 we should note that the potential has two

minima if n2 > e2/4 and n < 0 and these minima are at X = 0 and X = Xo. If

E = 0 in this circumstance the particles stability remain at X = 0 and X = xo'

: This demonstrates another parameter range where electrons injected with only
a small perpendicular velocity, but on the r = 0 beam axis will not remain there.
In this case of E = 0, the electron would sweep through r = D every Larmor cycle

with its guiding center remaining at the fixed distance X = |k°&|, from the axis,

and slowly rotating in angle.
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2

In both of these cases with n -e2/4 negative or positive, X0 or the

turning point, X_, defines the amount of excursion possible: X = X, =X

t’ ma x t o
* fkgwls z|k°6vl/QI, and as such measures both the perpendicular “thermal"
spread that a beam can develop; and its typical quiding center displacement.

For example when n < ¢, X, ~/2¢, giving a maximum radial displacement of an

t
electron of order 2/§E7k0; and a perpendicular velocity v, = /?EVZ. Both of
these displacements are significant and must be treated carefully and self-

consistently in the modeling of electron beam equilibria and free electron

gain factors.
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IV. DISCUSSION

The analysis presented here demonstrates that in the vicinity of resonance,
|kzvz/90| =~ 1 analytic techniques can be used to obtain the electron orbits
even in a longitudinal wiggler including the radial component of the magnetic
field. It is also possible to allow for adiabatic variation of the guide field
and wiggler wavelength, within this formalism if the quantities vary slowly in
a period of this reduced motion, which is of order 2n/9°e, or 2n/n90 whichever
is shortest. This same type of secular analysis has been applied to both the
helical and linear wiggler geometries without the assumption used here, of the
electrons being near the magnetic axis of the guide fie]d.i3 Additionally, a more
general perturbation formalism has been applied to a general wiggler geometry
with simple periodicity in Z assuming only a small wiggler field strength to
guide field strength. The question of stochasticity of the electron motion has
8

also been addressed.

In all, very important questions of the quality of the in situ electron

beam can be answered. Equally significant is that in the vicinity of resonance
lkan/Qol = N, N integer, where large radiation conversion efficiencies can be
expected, analytic approximations to the electron orbits can be obtained and
these are all important in determining realistic gain factors and saturation

mechanisms and radiation strengths for actual free electron lasers.
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